Процедура подготовки моделей PMOD3.

PMOD3 (Prepare MODel, step 3).

Второй шаг в подготовке векторов модели к вычислению профилей Стокса выходящего излучения — это расчет электронного и газового давлений в случае, когда для модели известно только температурное распределение. Такая ситуация бывает редкой и обычно второй шаг пропускается.

На третьем шаге мы определяем и готовим весь набор векторов и все исходные данные для расчета.

Структура, объединяющая данные для расчета.

Для расчета необходимы:

Векторы в формате модели фотосферы

Некоторые общие параметры.

Опции, позволяющие выбрать вариант расчета.

Общие глобальные параметры

```
LAMB : REAL; (* ДЛИНА ВОЛНЫ РАСЧЕТА *)
CTETA : REAL; (* COS ГЕЛИОЦЕНТРИЧЕСКОГО УГЛА *)
PERH : REAL; (* СРЕДНЯЯ АТ.МАССА НА 1 АТОМ ВОДОРОДА *)
```

читаются из файла начальных данных.

Величины косинуса гелиоцентрического угла Стета ($\mu = \cos \theta$) и длины волны LAMB (λ) зависят от контекста задачи.

Величина регн ($\mu_{per(H)}$) - средняя молекулярная масса на одно ядро водорода может быть задана непосредственно в начальных данных или вычислена из таблицы обилий элементов в составе солнечной фотосферы.

$$\mu_{per(H)} = \sum_{k \ni E_p} \! 10^{A_k - 12.0} \cdot \mu_k$$
 , где $\; \mu_k \;$ - атомный вес k-того элемента

 $A_{\!\scriptscriptstyle k}$ - стандартная запись обилия элемента $E_{\scriptscriptstyle k}$, отнесенного к водороду в виде $\lg\!\left(\frac{N_{E_{\scriptscriptstyle k}}}{N_{\scriptscriptstyle H}}\right)\!+12.0\,$,

таким образом:

```
обилие k-го элемента = 10^{A_k-12.0} , сумма обилий S_A = \sum_{k \ni E_P} 10^{A_k-12.0} ,
```

средний атомный вес солнечного вещества $\mu_{mean} = \mu_{per(H)}/S_A$

Опции управления счетом

```
KZFIELD : integer; (* отсутствие МП *)

KZAD : integer; (* 1 - пренебрежение аномальной дисперсией *)

KFLAT : integer; (* 1 - вычисления слоя параллельно 0 - по точкам *)

NLIN : integer; (* > 1 - счет с блендами *)
```

Векторы физических параметров в формате модели

Векторы в формате модели делятся на два типа:

- 1. Непосредственно необходимые в расчете величины, обычно они являются производными.
- 2. Величины, описывающие устройство модели, из которых вычисляются производные векторы

Основные векторы

```
MT : TVEMO; (* температура *)

MLGPG : TVEMO; (* lg газового давления *)

MLGPE : TVEMO; (* lg электронного давления *)

MVMI : TVEMO; (* микротурбулентная скорость км/с *)

MVD : TVEMO; (* лучевая скорость км/с *)

MH : TVEMO; (* напряженность поля Гс *)

MGM : TVEMO; (* угол вектора поля с лучем зрения *)

MXI : TVEMO; (* азимут угла вектора поля с)
```

Температура, газовое и электронное давление получаются в модуле PMOD1 из оригинальной модели.

Микротурбулентная и лучевая скорости, а также все параметры вектора магнитного поля могут быть заданы как исходные векторы модели фотосферы либо заполнены из заданных в стартовом файле постоянных значений.

Расчетные векторы I.

Векторы, которые используются непосредственно в расчете, но не относятся к описанию заданной спектральной линии:

```
MB : TVEMO; (* ФУНКЦИЯ ПЛАНКА *)
MS : TVEMO; (* ФУНКЦИЯ ИСТОЧНИКА *)
MKAPO : TVEMO; (* К-Т НЕПРЕРЫВН.ПОГЛОЩ. КАППА5000 *)
MEC : TVEMO; (* ОТНОШ-Е ПОГЛОЩ.КОНТИН. В ТЕК.ДЛ.ВОЛНЫ И НА 5000А *)
MCONT : TVEMO; (* УРОВЕНЬ КОНТИНУУМА *)
MDLH : TVEMO; (* МОДЕЛЬ МАГНИТНОЕ УШИРЕНИЕ *)
MGM : TVEMO; (* МАГНИТНОГО УГОЛ ВЕКТОРА ПОЛЯ С ЛУЧЕМ ЗРЕНИЯ *)
MXI : TVEMO; (* ПОЛЯ АЗИМУТ ВЕКТОРА ПОЛЯ *)
MDLVD : TVEMO; (* МОДЕЛЬ ЛУЧЕВОЙ СКОРОСТИ *)
```

Функция Планка.

Вектор МВ заполняется из вектора МТ по функции Планка:

```
FUNCTION PLANK(LAMB, T:REAL):REAL; (* LAMB [АНГСТРЕМ], Т [Град.Кельвина] *)
. . .
В := PLANK(LAMB, T);
```

Функция Планка в программе соответствует формуле (здесь единица длины волны – см):

$$B = \frac{C_1}{\lambda^5} \cdot \frac{1}{e^{C_2/\lambda T} - 1}$$
 [эрг/с/см³], где $C_1 = 2\pi hc^2 = 1.19106 \cdot 10^{-5}$ [эрг·см²/с], $C_2 = hc/k = 1.43879$ [см·град], λ выражена в [см]

Функция источника.

Функция источника MS позволяет учесть отклонения от ЛТР. В первом приближении MS = MT.

Коэффициенты непрерывного поглощения.

Распределение с глубиной коэффициентов непрерывного поглощения вычисляется процедурой PROCEDURE PKAP

Настоящая версия процедуры работает следующим образом:

Сначала производится чтение таблицы коэффициентов поглощения отрицательным ионом водорода. Таблица взята из книги Аллена (К.У.Аллен "Астрофизические величины" "МИР",М.,1977г.,с.152-153) с помощью процедуры REHM (READ H-MINUS).

Коэффициенты поглощения отрицательным ионом водорода

$\lambda(E)\setminus\Theta$	0.5	0.6	0.8	1.0	1.2	1.6	2.0
3000.0 4000.0 5000.0 6000.0 8000.0	3.50 3.63 3.77 3.83 3.91 3.95	3.76 3.90 4.02 4.08 4.15 4.17	4.22 4.34 4.46 4.53 4.60 4.63	4.59 4.73 4.83 4.90 4.97 5.03	4.93 5.08 5.20 5.26 5.31 5.33	5.54 5.66 5.80 5.86 5.93 5.94	6.09 6.23 6.32 6.40 6.46 6.52

Коэффициенты рассчитаны на один нейтральный атом водорода и на единицу электронного давления $\lg A(H^-)$, $A(H^-)$ в 1.0e-30 [$c M^4 / \partial u H$]

$$\kappa = 10^{-30} \cdot 10^A \cdot P_e \cdot \frac{\sum \mu_i A_i}{A_H} / M_H$$

Затем с помощью двойной линейной интерполяции (procedure INTER4) из этой таблицы по заданным значениям температуры T и длины волны λ находятся нужные коэффициенты.

И, окончательно, находятся значения

$$\begin{split} \kappa_{5000} &= A(H^{-})_{5000,\Theta} / (a.e.m. \cdot \mu_{per(H)}) * P_{e} \text{ M} \\ \kappa_{\lambda} &= A(H^{-})_{\lambda,\Theta} / (a.e.m. \cdot \mu_{per(H)}) * P_{e} \,, \end{split}$$

откуда получаются

$$\kappa_{5000}$$
 — вектор МКАРО в структуре TCONT и
$$\eta_C = \kappa_{\lambda}/\kappa_{5000} \; \text{ - вектор MEC}$$

Таким образом:

```
MKAPO.A[I] := FUNC_KAP_HMIN(5000,MT.A[I],MLGPE.A[I]);
MEC.A[I] := FUNC KAP HMIN(LAMB,MT.A[I],MLGPE.A[I])/MKAPO[I];
```

Уровень континуума.

Уровень континуума определяется из формулы

$$\cos\theta \frac{dI}{d\tau} = I - B$$

которая преобразуется в вид

$$\frac{dI}{dx} = \eta_C (I - B) \cdot \frac{\ln(10) \cdot 10^x}{\cos \theta}$$
, где

$$x = \lg \tau$$
, $d\tau = d\left(10^x\right) = \ln\left(10\right) \cdot 10^x dx$, $\eta_C = \kappa_\lambda^C / \kappa_{5000}^C$, κ_λ^C - коэффициент поглощения в континууме на интересующей нас длине волны κ_{5000}^C - коэффициент поглощения в континууме на длине волны для которой построена модель атмосферы

Вычисление проводится суммированием (интегрированием) излучения от всех слоев, начиная от нижней границы модели методом Рунге-Кутта. В начальной точке поток излучения приравниваем к значению функции Планка. Соответствующая функция FCT процедуры Рунге-Кутта выглядит следующим образом:

$$D = \frac{\tau}{\cos \theta} * \frac{\kappa_{\lambda}}{\kappa_{5000}} * Y - B$$

Здесь B берется из MB, отношение $\frac{\kappa_{\lambda}}{\kappa_{5000}}$ из MEC.

Шаг процедуры интегрирования берется равным шагу сетки модели. Для нижних слоев, где τ меняется быстро, интервал делится нужное число подинтервалов, чтобы величина $\Delta \tau$ не превысила заданную величину $\Delta \tau_{\text{Max}} = 0.5$.

Модель магнитного поля и поля скоростей.

Магнитное уширение вычисляется по формуле $\Delta \lambda_H = 4.66860 \text{E} \cdot 10 * H * \lambda^2$,

где напряженность поля дана в Гауссах, длина волны – в ангстремах.

Угол поля с лучем зрения и азимут поля для расчета не отличаются от этих же величин в исходном описании модели.

Наконец, доплеровские смещения получаются из лучевых скоростей по формуле $\Delta \lambda_D = \frac{V_D}{c} * \lambda$

Векторы модели, зависящие от спектральных линий.

Расчетные векторы II.

Для расчета профилей линий важны распределения с глубиной трех параметров, определяющих форму соответствующих профилей поглощения. Это

```
MDLD : TVEMO; (* ДΟΠΠΛΕΡΟΒΟΚΑЯ ΠΟΛΥШИРИНА *)
META : TVEMO; (* ΟΤΗΟШ-Ε ΚΟЭΦ-ΤΟΒ ΠΟΓΛΟЩЕНИЯ В ЛИНИИ И НЕПРЕР.СПЕКТРЕ *)
MA : TVEMO; (* ΠΑΡΑΜΕΤΡ ЗΑΤΥΧΆΗΝЯ *)
```

Доплеровское уширение $\Delta\lambda_D$ зависит от атома, от его атомного веса. Поэтому вектор мDLD для линий одного элемента будет одним и тем же. Так как вектор на самом деле хранится в общем списке векторов LVEMO, то он вычисляется только в первый раз, а во второй раз подставляется его ссылка из LVEMO.

Величина η_0 , которая характеризует относительную силу линии, зависит от параметров атома, перехода и от длины волны. В качестве промежуточных значений для её вычисления требуются

- суммы по состояниям U0, U1, U2 данного атома,
- доля атома данного элемента в заданной стадии ионизации $N_i \, / \, N_{tot}$
- коэффициент непрерывного поглощения на текущей длине волны $\kappa^{\scriptscriptstyle C}_{\scriptscriptstyle \lambda}$

Соответственно к набору векторов, зависящих от линии добавляются:

```
MUO : TVEMO; (* суммы по состояниям *)
MU1 : TVEMO;
MU2 : TVEMO;
MPART: TVEMO; (* доля данного атома в данной стадии ионизации *)
```

и полное описание структуры, содержащей данные о каждой линии расчета, будет:

```
TLINEDATA = CLASS(TObject)

DL : real; (* pacct.ot центра линии до начальной дл.волны *)

LINE : TLIDA; (* данные о линии *)

ZEE : TZEEMAN; (* расщепление *)

aATO : TATOM; (* данные об атоме *)

MDLD : TVEMO; (* ДОППЛЕРОВСКАЯ ПОЛУШИРИНА результат расчета *)

META : TVEMO; (* ОТНОШ-Е КОЭФ-ТОВ ПОГЛОЩЕНИЯ результат расчета *)

MA : TVEMO; (* ПАРАМЕТР ЗАТУХАНИЯ результат расчета *)

MUO : TVEMO; (* СУММЫ ПО СОСТОЯНИЯМ *)

MU1 : TVEMO;

MU2 : TVEMO;

MPART: TVEMO; (* доля данного атома в данной стадии ионизации *)

end;
```

PROCEDURE PETA

Определение коэффициента поглощения в центре линии

Подпрограмма PARTIT позволяет сравнить суммы по состояниям, вычесленные разными способами.

Способы:

- 1.) CAREL & JUDAKU 1959
- 2.) BOLTON 1970
- 3.) IRWIN 1981

ДОПОЛНЕНИЯ

Исходные модели:

$$au$$
 , $x = \lg au$ ξ_t $P_{\text{магн. nodh}}$ M $P_{\text{кин.}}$

$$T$$
 , Θ $\lg P_g$, P_g , P_{tot} , N_H $\lg P_e$, P_e , N_e

Генерация распределения:

C = CONST

G = GRAD $\lg \tau = (1.0, -4.0)$

M = MODEL = TABL

O = M + C

 $Q = M_O + C$

Описание данных, прочитанных вариатором из входного файла

Мнемоника первой буквы для данных типа векторов:

С - CONST по всей таблице

T – TABLE – приводится имя таблицы, хранимой на диске

M – MODEL – синоним к Т

G – GRADIENT – вычисляется из значений для $\lg \tau = (1.0, -4.0)$

Векторы модели, зависящие от спектральных линий.

Подструктура, описывающая модель целиком

Кроме имени модели подстуктура имеет поля, которые помогут отнести её к какому либо из классов:

- 1. Фотосферное образование: е.д. пятно, факел и т.д.
- 2. Учтены ли отклонения от ЛТР да или нет
- 3. и т.д.

Многокомпонентная модель

Для многокомпонентных моделей может быть определена группа общих для всех компонент векторов.

N - число компонент

P[1..N] - веса каждой компоненты

V - исходные векторы для "динамической модели" + коэ ϕ -ты законов динамики

DA - дата создания рабочего представления модели

NWVE - номер версии

_					_				
m۱	/НКЦ	140	_	\sim	n	22	\sim $_{\rm C}$	21	1140
Ψı	/ N K LI	וכועו	111	JEU	UU	ıas	UE	зап	ил.
- 1									

Обязательными параметрами моделей для расчета профилей Стокса фраунгоферовых линий являются

и соответственно определить единую функцию:

Векторы модели делятся на несколько типов.

- 1. Векторы в формате оригинальных моделей
 - 10. Векторы глубин

```
MX (= MLGTAU), MZ (масса столба), MKM (высота в километрах)
```

11. Исходные векторы физических параметров для моделей

```
MT, MPG, MPE, MH, MGM, MXI, MVD, MKSI, MKAPPAO
```

12. Производные векторы для анализа моделей

MdSdTau

- 2. Векторы в формате рабочей сетки расчета
 - 20. Вектор глубин
 - 21. Набор исходных векторов
 - 22. Наборы векторов физических параметров для анализа моделей
 - 23. Набор общих (не зависящих от линии) векторов для расчета

```
MB, MS, MCONT, MEC, MDLH, MGM, MXI, MDLVD
```

24. Наборы зависящих от линии векторов для расчета

```
MDLD, META, MA
```

25. Наборы векторов, привязанных к сетке длин волн

(например коэ ϕ -ты поглощения, плотности излучения для разных направлений, значения параметров Стокса)

Общие свойства.

- 1. sMOD имя модели атмосферы
- 2. NAME имя вектора, определяющее его функционал (может быть не уникально)
- 3. FMOD формат модели связка с вектором глубин
- 4. Опции принадлежности к типам векторов I_0, I_1, I_2, II_0, II_1, II_2, II_3
- 5. Опция принадлежности к типу II_4
- 6. LAMO длина волны расчета
- 7. LAML длина волны линии, если задана линия
- 8. LAMC длина волны текущая, если вектор привязан к сетке длин волн
- 9. LIN Id линии
- 10. ATOM Id атома (хим.элемента)
- 11. KSrc опция 1/2 оригинальная модель / расчетная модель
- 12. KX опция вектора глубин 0-не глубины; 1 X=lg(Tau); >1 другие

13.

Часть векторов является обязательно используемыми в отдельных алгоритмах. К ним лучше обращаться по именам, а не по индексам. Предлагается следующий подход: Все вектора, кроме векторов, привязанных к сетке длин волн размещаются в списка (TList). Для доступа по имени создаем указатели с соответствующими именами и эти указатели переадресуем на нужные элементы списка TList.

end;

```
sMOD : string; (* имя модели
    NAME : string; (* имя вектора, определяющее его функционал
                                                                                    * )
    EXT : string; (* (CHR3) для совместимости со старым РМОD1
                                                                                    * )
    FMOD : integer; (* номер формата модели (для стандартных форматов) *)
    КSrc : byte; (* 1/0 - вектор оригинальной модели
КWrk : byte; (* 1/0 - вектор, включенный в расчеты по модели
КТур : byte; (* 1/0 - вектор для вывода для анализа
КХ : byte; (* 1/0 - вектор - ордината (Х функции)
КLin : byte; (* 1/0 - вектор, заданный для уникальной сп.линии
КАt : byte; (* 1/0 - вектор, заданный для уникального атома
КLam : byte; (* 1/0 - вектор на точке в сетке длин волн
                                                                                    * )
                                                                                    * )
                                                                                    * )
                                                                                    * )
                                                                                    * )
                                                                                    * )
                                                                                    * )
    PhDe : pointer; (* заготовка - физическая размерность
 (* возможно связанные с вектором величины: *)
    LIN8 : CHR8; (* идентификатор линии (или нули, пробелы)
                                                                                    * )
    ATOM : CHR2;
                                                                                    * )
                       (* ИДЕНТИФИКАТОР АТОМА
 (* ключи для чтения из разных вариантов исходных таблиц: *)
    KEY1 : TReadKey; (* ключ S, \phi-я преобразования IdFunc *)
    KEY2 : TReadKey;
    KEY3 : TReadKey;
    SCAL1 : TModSCAL;
                          (* три варианта для рисования графика *)
    SCAL2 : TModSCAL;
    SCAL3 : TModSCAL;
           : TVEMO;
                      (* ссылка на вектор глубин X = lg(Tau)
                                                                                    * )
           : TARe; (* динамический массив
           : integer; (* отведенное место для массива в SizeOf(Real)
                                                                                    * )
constructor Create;
  end; (* TVEMO *)
  TLVEMO = class(TList) (* хранитель всех векторов в формате моделей *)
    CurMOD : string; (* строка - имя модели (сост.часть им.файла) *)
procedure AddVec(Name0,Ext0,K1,K2,K3:string;i1,i2,i3:integer); (* определить *)
                                                           (* найти вектор по имени *)
function SercN(Name0:string):integer;
function GetModVec(sMOD0,Name0:string):integer;
                                                                        (* найти вектор *)
procedure SetScal(Name0:string;I:integer;Ch:char;X0,X1,XD:real);(* задать Scal*)
```