Список определений Температура и Давление:

 T_{κ} - кинетическая температура атомов и молекул

 T_{I} - температура, определяющая ионизационное равновесие

 $T_{\scriptscriptstyle M}$ - условная температура, соответствующая микротурбулентной скорости

 $T_{\scriptscriptstyle D}$ - температура, соответствующая доплеровской скорости $T_{\scriptscriptstyle D} = T_{\scriptscriptstyle K} + T_{\scriptscriptstyle M}$

 $P_{\scriptscriptstyle T}$ - полное давление

 $P_{\scriptscriptstyle R}$ - давление магнитного поля

 P_{V} - турбулентное давление

 P_{I} - давление излучения

 $P_{\scriptscriptstyle o}$ - газовое давление

 $P_{\phi 0}$ - газовое давление, если бы не было молекулярного водорода

 $P_{\scriptscriptstyle H}$ - парциальное давление атомарного водорода

 P_{H0} - давление водорода, если бы он весь был в атомарной форме

 $P_{{\scriptscriptstyle HM}}$ - парциальное давление отрицательного иона водорода

 P_{H2} - парциальное давление молекулярного водорода

 P_{H2P} - парциальное давление иона H_2^+

 P_{a} - электронное давление

$$P_T = P_g + P_B + P_V + P_I$$

$$P_{{\scriptscriptstyle HA}} = P_{{\scriptscriptstyle H}} \, + P_{{\scriptscriptstyle HM}} \, + P_{{\scriptscriptstyle H}\,2} \, + P_{{\scriptscriptstyle H}\,2P}$$

$$P_{g} = P_{EX} + P_{HA} + P_{e}$$

 P_{hs} - давление для гидростатического равновесия ~ P_{T}

$$P_{g} = P_{hs} - P_{B} - P_{V} - P_{I}$$

$$dP_{a} = dP_{bs} - dP_{R} - dP_{V} - dP_{I}$$

Связь давления и концентрации частиц:

$$P = NkT$$
, в частности $P_e = n_e \cdot kT$

Соотношение газового и электронного давлений

$$\frac{P_g}{P_e} = \frac{1+E}{E} \qquad \text{if} \qquad E = \frac{P_e}{P_g - P_e}$$

Эффективная температура

$$\pi H = \sigma T_e^4$$
 , где H - поток излучения $(=CONT_{\tau=0})$ $\sigma = 5.670 \cdot 10^{-5} \, \text{эрг}/(c M^2 \cdot c \cdot 2 pa \partial^4)$