состояние». Екатерин-бург, 17-23 июля 2006 г. Екатеринбург: Институт геофизики УрО РАН, 2006. С.38 – 41.

 Зверев А.С., Кириаков В.Х., Любимов В.В. Протонные магнитометры // Экономика и производство. /Технологии, оборудование, материалы / Журнал организаторов производства. М., 2005. No.2. C.71-73.

4. «Искусственный интеллект в изучении магнитного поля Земли. Российский сегмент IN-TERMAGNET» Международная конф. 26-28.01 2011 г. Углич, Ярославская обл. Тезисы.

5. Короновский Н.В. Магнитное поле геологического прошлого Земли // Соросовский образовательный журнал. - 1996. - №5. - С.56-63.

6. Процессорный оверхаузеровский датчик POS-1. Руководство по эксплуатации. УГТУ. Екатеринбург, 2001 г. 36 с.

7. Рахматулин Р.А. Частное сообщение. 2011.

8. Ривин Ю.Р. Понятие «геомагнитная активность» в современной солнечноземной физике // Геомагнетизм и аэрономия. 2008. – Т.48, No.1. C.134-142.

9. Старжинский С.С. Результаты магнитовариационных исследований в Приморье // Физика Земли. – 2004. - №8.- С.25-33.

10. Яновский Б.М. Земной магнетизм. Л.: Ленинградский ун-т. 1978. 592 с.

11. http://www.uafo.ru/.

12. http://www.iszf.irk.ru/.

УДК 523.98

А.В.Баранов, Л.Ф.Лазарева, С.Г.Можаровский

ИНВЕРСИИ ПРОФИЛЕЙ КРУГОВОЙ ПОЛЯРИЗАЦИИ В СПЕКТРАЛЬНЫХ МАГНИТОАКТИВНЫХ ЛИНИЯХ РАЗ-ЛИЧНЫХ ЭЛЕМЕНТОВ

Для 4 спектральных линий железа, двух линий кальция, одной линии титана и одной линии ванадия в диапазоне длин волн λλ 605.0–618.0 выполнены решения системы уравнений переноса излучения с учетом аномальной дисперсии. Использована модель солнечного пятна Книра.

Расчет велся для значения напряженности магнитного поля H от 2500 до 3500 Э, углы наклона силовых линий γ полагались равными 30, 40, 50, 60, 70, 80°.

Проведенные расчеты показали, что профили круговой поляризации триплетных и квазитриплетных линий со значительными эффективными факторами Ланде (g ~ 2) и компактными группами π – и σ –компонент имеют инверсии вблизи центров линий, независимо от того, какому элементу с каким атомным весом они принадлежат.

Не обнаружено инверсий г_V-профиля у линии со значительным расщеплением - Fe1 λ 608.27 нм. Нет явных признаков инверсий г_V-профиля у линий FeI $\lambda\lambda$ 621.3 и 633.7 нм. Все они имеют большой эффективный фактор Ланде (g = 2), но структура расщепления линий – ((2), 3,5))/2 – такова, что их π -компоненты находятся далеко от центра линий и заметный эффект показывать не могут. Однако они дают заметные характерные искажения г_V-профиля в местах, близких к положению σ -компонентов.

Экспериментальный материал в основном подтверждает приведенные выше расчеты. Следует отметить, что указания на инверсию профилей круговой поляризации показывают наблюдения в линии CaI λ 612.22 нм, не имеющей центрального π -компонента.

ВВЕДЕНИЕ

Данная работа фактически является продолжением начатого в [5] рассмотрения проявлений аномальной дисперсии в солнечных пятнах вблизи центров ряда магнитоактивных линий [10] с различной, но, как правило, триплетной или квазитриплет-ной (видимой в спектре как триплет) структурой зеемановского расщепления. В спектральном диапазоне 605.0- 618.0 нм нами рассматривались линии, имеющие визуально наибольшие расщепления компонент. Краткие обзоры состояния вопроса даны в [9], а также нами в [5] и в работе [8], поэтому здесь на этом вопросе мы будем останавливаться по мере необходимости обсуждения или сравнения результатов. Отметим только, что в выполненных ранее исследованиях преимущественно анализировались профили интенсивности r_i и профили круговой поляризации r_V линии Fe1 630.25 нм, по которой, благодаря находящимся вблизи ее кислородным «репером», можно с высокой точностью совмещать профили линии разной круговой поляризации.

В [5] нами получено, что инверсии профилей Стокса круговой поляризации могут наблюдаться во многих спектральных линиях, имеющих более-менее значительные факторы Ланде g (>1.6), компактные группы компонентов расщепления и эквивалентные ширины в пятне порядка 50 mÅ и более.

Экспериментальный материал, изложенный в работе [3] в основном подтверждает результаты работы [5]. Наиболее заметные проявления инверсии r_V -профиля в указанном спектральном диапазоне были найдены в линиях FeI λ 630.2 нм (A = 2.0%), CrI λ 633.0 нм (A = 1.0%) и FeI λ 623.2 нм (A = 0.6%). В скобках приведены максимальные измеренные значения амплитуды инверсий А. Отметим, что измерения относились к внутренней полутени пятна. В данной работе рассматривается инверсия r_V -профиля вблизи централинии, полученная из измерений r_V -профилей и расчетов соответствующих профилей.

ВЫБОР ЛИНИЙ И МЕТОДИКА ИЗМЕРЕНИЙ

В указанном диапазоне для волн было отобрано 8 визуально неблендированных, по меньшей мере в ядре, линий, данные о которых приведены в табл. 1.

Таблица	1
---------	---

Эл- т	λ _i , нм	Е _і , эВ	Lg(gf) _i	Источник	Wph, mÅ	Whm, mÅ	Wsw, mÅ	g _i
Ti1	606.46	1.07	-1.81	AdjustGK	8	5	79	1.99
Fe1	608.27	2.22	-3.57	Oxford	34	33	54	1.998^{*}
Ca1	610.27	1.88	-0.89	Kurucz	135	113	316	2.002
V1	611.65	1.04	-0.65	AdjustGK	11	9	106	1.270^{*}
Ca1	612.22	1.89	-0.41	Kurucz	222	147	369	1.751^{*}
Fe1	613.70	2.59	-2.95	Kurucz	64	66	94	1.984**
Fe1	615.16	2.18	-3.30	Oxford	49	50	73	1.837**
Fe1	617.33	2.22	-2.88	Oxford	69	68	98	2.499

В табл.1 приведены последовательно: элемент, длина волны линии λ_i , потенциал возбуждения ее нижнего уровня E_i , логарифмы сил осцилляторов Lg(gf)_I, источник из которых они взяты: Oxford – данные из [16], Кигисz – из [12], AdjustGK – подобраны с помощью нашей программы, используя данные о глубине и эквивалентной ширине спектральных линиях, приведенные в [7]. Далее приводятся эквивалентные ширины линий в фотосфере Wph, взятые из [15], а также рассчитанные нами для модели фотосферы Хольведжера-Мюллера Whm и модели тени пятна Стельмахера-Вира Wsw [9]. В последней колонке даны лабораторные эффективные факторы Ланде g_i , рассчитанные с помощью данных работ [11-14]. Для линий со сложным расщеплением без центральных π - компонентов величины g_i помечены звездочкой. Линии Fel 613.70 и 615.16 нм (помечены двумя звездочками) имеют сложную структуру расщепления, но относительно компактные группы π - и σ -компонентов.

Соответствующие структуры расщепления используемых нами триплетных и квазитриплетных линий приведены на рис.1. Указан-

ные линии, имея значительные факторы Ланде, могут успешно применяться для измерения магнитных полей [3,5].

Нами выполнены измерения г_I и г_V-профилей указанных в табл.1 линий. Из анализа г_I-профилей находился центр линий, относительно которого, в предположении антисим-метрии г_V-профилей [3], алгебраическим сложением и вычитанием значений в равноудаленных от центров линий точках находилась их форма. Были проанализированы профили линий в спектрах семи солнечных пятен. Поскольку изучаемые г_V-профили соответствующих спектральных линий в общих чертах сходны, мы сочли разумным привести в табл.2 типичные результаты измерений в одном из них – за 02.08.1989 года.

Рис.1. Структуры расщепления триплетных и квазитриплетных линий

Таблица 2

617.33

			-				
Линия,	606.46	608.27	610.27	611.65	612.22	613.70	615.16
HM							

Результаты наблюдений

HM								
A %	3.2	-	0.5	-	-	2.7	3.2	1.4
L,mA	60	-	43	-	-	67	76	25
Н _{πσ} , Э	3415	3890?	3740	2520,4500?	?	3310	3430	3300

Примечание. Величина A – максимальные величины инверсий r_{V-} профилей, L – размеры областей инверсий в mÅ. $H_{\pi\sigma}$, - выраженные в эрстедах расстояния между центрами линий и экстремальными (максимальными) значениями r_{V} -профилей.

Рис.2. Пояснения в тексте

На рис.1 по горизонтальной оси отложены значения, кратные 5 пикселам. Они соответствуют шагу в 16.5-16.8 mÅ, из-за меняющейся в зависимости от длины волны линии дисперсии. По вертикальной оси значения даны в тысячных долях интенсивности непрерывного спектра.

Отметим, что истинное значение напряженности магнитного поля, по-видимому, близко к измеренному по триплетной линии Fel λ 617.33 нм, имеющей наибольшее расщепление из всех использованных линий. Из списка, приведенного в табл.1 сильными линиями можно считать лишь линии Cal.

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Анализируя данные табл.2 можно видеть, что величины $H_{\pi\sigma}$ триплетных и квазитриплетных линий (см. рис. 1), имеющих близкие по величине факторы Ланде, близки межу собой, за исключением линии Cal λ 610.27 нм, которая имеет наибольшую из всех отмеченных линий эквивалентную ширину. Измерения $H_{\pi\sigma}$ по линиям, не имеющим центрального π -компонента, весьма проблематичны, поскольку для используемых нами линий π - и σ -компоненты объединяются в одну группу компонент. А так как интенсивность π -компонентов явным образом зависит от угла наклона силовых линий магнитного поля к лучу зрения γ , то эта группа компонент будет иметь как бы «переменный» фактор Ланде. Понятно, что в такой ситуации величину $H_{\pi\sigma}$ можно только оценить.

Наблюдаемые г_v-профили спектральных линий, измеренные по спектрограмме солнечного пятна (граница тень-полутень за 02.08.1989 года) приведены на рис.2.

Напомним, что обычная точность фотометрии по спектрограммам составляет примерно 2-3%, что необходимо учитывать при анализе профилей Стокса линий. Однако, даже учет ошибок подобной величины не сможет объяснить наблюдаемые формы r_V -профилей спектральных линий без центральных π -компонентов - Fe1 λ 606.46 и V1 λ 611.65 нм. Достаточно необычную форму имеет и r_V -профиль линии Ca1 λ 612.22 нм.

Следует отметить, что величины A некоторых линий явно большие, чем величина A наиболее чувствительной к магнитному полю линии Fe1 λ 617.33 нм. Очевидно, что этот вопрос нуждается в отдельном исследовании по материалу, включающему в себя профили более сильных спектральных линий, и нужно изучить зависимость A не только от фактора Ланде, но и от эквивалентной ширины линий.

РАСЧЕТ ЛИНИЙ

Экспериментально найденные г_v-профили мы сравнили с теоретически рассчитанными. Для указанных в табл.1 спектральных линий выполнены решения уравнений переноса излучения с учетом аномальной дисперсии. Применялся метод решения системы дифференциальных уравнений Рунге-Кутта с переменным шагом. Использована модель тени солнечного пятна Книра. Основные предположения при расчетах: скорость микротурбулентности полагалась равной нулю, косинус гелиоцентрического угла θ принят равным 0.7. Расчет велся для значений напряженности магнитного поля H = 2500, 3000, 3500 Э, углы наклона силовых линий к лучу зрения γ^0 полагались равными 30, 40, 50, 60, 70, 80°.

Во всех случаях расчет показывает, что у центров выбранных нами триплетных и квазитриплетных линий есть инверсия $r_{\rm V}$ -профилей линий.

В табл.3 приведены некоторые результаты расчетов, для H = 3000 Э и γ = 60⁰ и 80⁰. Можно видеть, что и расчетные величины H_{πσ} триплетных и квазитриплетных линий, имеющих близкие по величине факторы Ланде, близки межу собой, хотя и систематически выше принятых при расчетах значений поля. Тот факт, что H_{πσ} > H, хорошо известен, а, для случая малых расщеплений, с помощью анализа формул Унно (см. напр. [9]) объяснен нами в [1].

Остановимся на особенностях найденных г_V-профилей линий без центральных π -компонентов. Их структуры расщепления показаны на рис.3. И, если по экспериментальным г_V-профилям величину Н_{$\pi\sigma$} определить сложно, то на расчетных профилях, при фиксированных значениях Н и γ^0 , это делается без труда. Линия Cal λ 612.22 нм, по своей структуре наиболее близкая к квазитриплетным

(см. рис.3), и являющаяся наиболее сильной из используемых нами линии (табл.1).показывает величину $H_{\pi\sigma}$ >4000 Э. Рассматривая данные табл.3 и r_V -профиль данной линии на рис.4, можно видеть у центра этой линии сложную картину, являющуюся следствием воздействия на профиль аномальной дисперсии, обусловленной действием смещенных относительно центра линии σ -компонентов и имеющих сравнительно небольшой фактор Ланде $g_i = 0.5$.

Расчеты

Таблица З

Линия,	606.46	608.27	610.27	611.65	612.22	613.70	615.16	617.33	γ^0
HM									
A %	4.2	-	2.5	-	0.8	3.2	2.9	3.4	
L,mA	52	-	52	-	49,16	48	52	53	60
Η _{πσ} , Э	3150	3800	3450	4130	4020	3300	3210	3105	
A %	1.5	-	1.0	-	0.4	1.2	1.1	2.2	
L,mA	55.5	-	54	-	52,16	55.5	49.5	55.5	80
Н _{πσ} , Э	3240	3820	3570	4300	4050	3330	3320	3150	

Обозначения указанных в таблице величин те же, что и в табл. 2.

Рис. 3. Структуры расщепления линий без центрального компонента

Также особенностями структуры расщепления объясняется большое значение $H_{\pi\sigma}$ как у экспериментальных, так и у расчетных r_{V} -профилях линии Fe1 λ 608.27 нм. Она имеет структуру расщепления ((2)3,5)/2 и π -компонент, и, взаимодействуя с более близким к цен-

тру линии σ -компонентом, как бы частично его «съедает», что приводит к фиктивному увеличению эффективного фактора Ланде, и, соответственно, росту наблюдаемы и расчетных $H_{\pi\sigma}$.

Линия V1 λ 611.65 нм, имеющая наименьший из используемых линий фактор Ланде $g_i=1.27$, показывает наибольшее значение $H_{\pi\sigma}$ >4130 Э, что и следует из теории Унно образования линий в магнитном поле [1]. Несомненно, что профили данных линий необходимо детально изучить отдельно.

Сравнивая данные табл. 2 и 3 можно видеть, что, количественно, величины A и L у экспериментальных и рассчитанных г_v-профилей триплетных и квазитриплетных линий между собой близки (даже, в пределах указанных выше ошибок, их можно считать одинаковыми).

Рис.4. Теоретически рассчитанные профили линий. Пояснения даны в тексте

РАСЧЕТ ЛИНИЙ СО СЛОЖНЫМ РАСЩЕПЛЕНИЕМ

Представляется интересным проследить, какие особенности Fe1 λ 606.46 нм имеют линии без центральных π–компонентов. Струк-

туры расщепления этих линий приведены на рис.3. Расчетные г_V– профили линий показаны на рис.4, где для сравнения показан г_V– профиль линии Fe1 λ 606.46 нм, типичный для триплетных и квазитриплетных линий. У триплетных линий можно отметить сходство особенностей, отмечаемых в области их π – компонентов. В то же время, наиболее близкая к квазитриплетным, линия Ca1 λ 612.22 нм, имея близкую к обычной форму г_V–профиля в области σ – компонентов, у центра линии показывает особенность, сходную (но не ту же!) с инверсиями г_V–профиля квазитриплетных линий. Вопрос может иметь серьезное значение для измерений величины магнитного поля по линиям подобной структуры, как при использовании фотографических спектров, так и при магнитографических наблюдениях.

Полученные в данной работе результаты интересно сравнить с результатами нашей работы [5], где изучались г_V-профили линий со значительным расщеплением в спектральном диапазоне 613.0 - 6337.0 нм. Здесь имеет смысл повторить рисунки и некоторые результаты, приведенные в [5]. Проведенные в ней расчеты показали, что профили круговой поляризации имеют инверсию вблизи центров линий FeI λ 630.25 нм (A= 1.5%), FeI λ 623.2 нм (A= 0.6%) и CrI λ 633.0 нм (A= 1.9%). Последние две линии имеют значительные факторы Ланде (2 и 11/6 соответственно) и компактные группы π -и σ -компонентов. Расчетные r_V -профили этих линий приведены на рис.5.

Было отмечено, что явных признаков инверсий r_V -профиля у линий FeI $\lambda\lambda$ 621.3 и 633.7 нм нет. Они имеют большой эффективный фактор Ланде (g = 2), и структура расщепления – ((2), 3,5))/2 – одинакова с линией FeI λ 608.27 нм, их π -компоненты находятся далеко от центра линий и сколько-либо заметный эффект показывать не могут. Но на их расчетных профилях, на значительном расстоянии от центра линии, также есть депрессии (не инверсии!) r_V -профиля, которые обусловлены действием аномальной дисперсии.

Рис. 5. Теоретически рассчитанные профили линий из [5]

Рис.6. Экспериментальные профили круговой поляризации линий из спектрального диапазона 613.0 - 6337.0 нм [5], имеющие максимальные значения инверсии

Экспериментальный материал, изложенный в работе [5] (см. рис.6), также подтверждает приведенные выше расчеты. Наиболее заметные проявления инверсии r_V -профиля в указанном спектральном диапазоне имели линии FeI λ 630.2 нм (A = 2.0%), CrI λ 633.0 нм (A = 1.0%) и FeI λ 623.2 нм (A = 0.6%).

Однако следует отметить, что указания на инверсию профилей Стокса круговой поляризации показали наблюдения в линии FeI λ 633.68 нм, имеющая у центра линии величину A ~ 0.2%. Было отмечено, что вопрос требует внимательного дальнейшего анализа с использованием линий со структурой расщепления сходной со структурой расщепления линии FeI λ 633.68 нм. В данном цикле расчетов нами получена инверсия малой, 0.4-0.8%, амплитуды в центре линии Ca1 λ 612.22 нм, по своей структуре наиболее близкий к структуре данной линии, и, естественно, к структуре линий FeI $\lambda\lambda$ 621.34 и 608.27 нм. Возможно, при определенных значениях H и γ^0 это и проявляется на r_V -профиле линии FeI λ 633.68 нм, что объясняет найденную в [5] особенность.

ОБСУЖДЕНИЕ

В [2] нами рассчитано, что зависимость величины η_0 (отношение коэффициента селективного поглощения в центре линии к коэффициенту поглощения в непрерывном спектре) от оптической глубины τ у линии Cal λ 610.27 нм является примерно такой же, как у линии Fel λ 630.2 нм (различие, практически, определяется наличием у величины $\eta_0(\tau)$ линии Fel λ 630.2 нм некоторого постоянного множителя, уменьшающего расчетные величины $\eta_0(\tau)$ линии Cal λ 610.27 нм). У линии Fel λ 617.33 изменение η_0 с τ значительно слабее, но по абсолютной величине η_0 в несколько раз меньше. Однако, учитывая тот факт, что атомный вес Fel в 1.39 раза больше, чем у Cal, используя известную формулу

$$\Delta \lambda_{\mathrm{Di}} = (2\mathrm{RT}/\mathrm{m_i} + \mathrm{v_{MUKPO}^2})^{1/2},$$

где $v_{\text{микро}}$ – микротурбулентная скорость, m_i - атомная масса соответствующего элимента, остальные обозначения – общепринятые, не

сложно оценить, что отношение величин $\Delta\lambda_D$ линий Ca1 и FeI составит 1.19 при умикро= 0 и 1.10 при часто используемой величине v_{микро}= 1.0 км/сек. Поскольку расчет профилей Стокса линий выполняется в единицах доплеровской полуширины, то линия Ca1 λ 610.27 нм будет иметь профили, сходные с триплетной линией FeI, с потенциалом возбуждения нижнего уровня ~3.69 эВ и имеющей фактор Ланде не 2, а 1.68-1.81. Подобной линии в солнечном спектре нет, по крайней мере в изучаемых областях спектра. В [5] нами изучалась квазитриплетная линия FeI λ 623.2 нм, имеющая эффективный фактор Ланде 2 и наблюдаемую А= 0.6%. Исходя из проведенных рассуждений, мы можем у линии кальция ожидать меньшее значение амплитуды инверсии. Но анализ наблюдаемых профилей Стокса линии Са1 λ 610.27 нм показал, что величина А \approx 0.6%, а теоретический расчет линии при H= 3000 Э и $\gamma = 60^{\circ}$ дает значение А≈ 2.5%. Вопрос нуждается в дальнейшем изучении.

Отметим, что у линий с квазитриплетной структурой расщепления лабораторные факторы Ланде, полученные для линии излучения, как правило, не соответствуют зффективному фактору Ланде той же линии, но наблюдаемой в солнечной фотосфере (т.е. в поглощении) [6]. В результате, при измерениях величин поля Н и Н_{ло} возможны систематические ошибки, в некоторых случаях достигаюшие 10-15%.

ВЫВОДЫ И ПЕРСПЕКТИВА РАБОТ

В заключение необходимо сделать определенные выводы и наметить перспективы работ в данном направлении.

В рабочем, 4 порядке спектрографа АСП-20 мы можем одновременно получать профили Стокса линий в диапазоне 605.0-619.0 или 621.0 -634.0 нм, в которые входят около 10 пригодных для анализа вопроса линий. Это мало для изучения большинства особенностей поведения инверсий r_v-профилей. По этой причине мы вынуждены дополнять наблюдательный материал теоретическими расчетами.

В данной работе мы показали, что инверсии r_v-профилей есть у линий различных химических элементов и, возможно, амплитуда инверсий связана не только с величиной магнитного поля и его углом наклона к лучу зрения а также структурами расщепления, но и с эквивалентной шириной изучаемых линий и моделью атмосферы изучаемого образования. И если для линий с умеренной эквивалентной шириной мы провели достаточно полные оценки инверсий r_vпрофилей, то для сильных линий, на наш взгляд,

необходимы дополнительные исследования.

Обнаружены особенности формы rv-профилей линий, не имеющих центральных π-компонентов и, по-видимому, обусловленные аномальной дисперсией. Эта особенность, несомненно, нуждается в отдельном анализе. Она может оказаться полезной в изучении действия на линии аномальной дисперсии, поскольку проявляется в части профилей спектральных линий, менее подверженных искажениям формы из-за действия рассеянного из фотосферы света, чем их центры.

Авторы благодарны Н.Н.Барановой за помощь в расчетах и подготовке рукописи работы.

Работа выполнена при поддержке грантов ДВО РАН 09-І-П7-01, 09-II-СО 02-002 и 09-III-А-02-49.

ЛИТЕРАТУРА

1. Баранов А.В. Поведение экстремумов профилей Стокса магнитоактивных линий в спокойной солнечной фотосфере.// Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 2005. С. 3-14. (Тр. УАФО; т.8, вып.8).

2. Баранов А.В. Баранова Н.Н. Влияние температурного распределения в солнечной атмосфере на зависимость измеряемой напряженности магнитного поля от эквивалентной ширины спектральных линий // Глобальные вариации Солнца и физика активных областей. Владивосток: Дальнаука, 1993. С. 30-53.

3. Баранов А.В., Лазарева Л.Ф. Анализ профилей Стокса спектральных линий со сложной структурой расщепления и проблема измерения магнитного поля в солнечном пятне // Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 2006. С. 20-33 (Тр. УАФО; т. 9, вып. 9).

4. Баранов А.В. Можаровский С.Г. К вопросу о влиянии аномальной дисперсии на поляризационные параметры спектральных линияй в атмосфере солнечного пятна и фотосфере Солнца // Магнитные поля и активные процессы на Солнце. Владивосток: Дальнаука, 1995. С. 22-38.

5. Баранов А.В, Можаровский С.Г. Проявления аномальной дисперсии в солнечных спектральных линиях со сложной структурой расщепления // Изв. Крым. астрофиз. обсерватории. 2010. Т.106. №1. С.235-238.

6. Баранов А.В. Расчет профилей Стокса линий со сложным расщеплением и малым фактором Ланде в спектрах солнечных пятен //Всероссийская конференция «Солнечная и солнечно-земная физика». С-Пб. 3-9.10.10.Труды.2011. С. 39-43.

7. Гуртовенко Э. А., Костык Р. И. Фраунгоферов спектр и система солнечных сил осцилляторов. Киев: Наукова думка, 1989. 200 с.

8. Лозицкий В.Г., Коломиец Д.Г. Особенности расщепления зеемановской πкомпоненты линии FeI λ 630.25 нм в спектрах солнечных пятен и вспышек // Солнечная активность и ее влияние на Землю. Владивосток: Дальнаука, 2006. С. 79–96 (Тр. УАФО; т. 9, вып. 9).

9. Обридко В.Н. Солнечные пятна и комплексы активности. М: Наука. 1985. С. 256.

10. Рачковский Д.Н. Эффекты магнитного вращения в спектральной линии //Известия Крым. астрофиз. обсерватории. 1962. Т.28. С.259–270.

11. <u>ftp://ftp.noao.edu/fts/linelist/Moore</u>.

12. http://kurucz.harvard.edu/lineslists.html

13. http://ams.astro.univie.ac.at/

14. Moore. C.E. Atomic energy levels, vol. II. Circ. Nat. Bur. Stand. Washington, 1971. N3.

15. *Moore C.E., Minnaert M.G., Houtgast J.* The solar spectrum 2935 to 8770 Å. Washington: National Bureau of Standards. Washington. 1966. 349 p.

16. Simmons G. J and Blackwell D. E. A nalysis of Fei Lines (0.00 eV </ 2.6 eV) in the Solar Spectrum Using Improved Damping Constants and Accurate Oscillator Strengths: Test of a Solar Model Atmosphere //Astron. Astrophys. 1982. V. 112. P. 209-214.

УДК 523.62-726

Д.В. Ерофеев

ЗАВИСИМОСТЬ МЕЖДУ СКОРОСТЬЮ И МАГНИТНЫМ ПОЛЕМ В СОЛНЕЧНОМ ВЕТРЕ

Хорошо известно, что для волн Альвена характерна линейная зависимость между вариациями скорости плазмы и магнитного поля, причем знак их корреляции зависит от направление постоянного магнитного поля. В силу этой зависимости компоненты вектора скорости, выраженные в функции компонент магнитного поля, обладают определенной симметрией. Такая симметрия может быть использована для исследования альвеновских волн в солнечном ветре (СВ). Для этого нами использованы среднечасовые значения скорости и магнитного поля, измеренные на околоземных орбитах в 1974-2010 гг. и собранные в базе данных OMNI-2. По этим данным рассчитаны зависимости поперечных (по отношению к радиальному направлению) компонент скорости от направления магнитного поля. Эти зависимости обладают симметрией, характерной для альвеновских волн, хотя пониженные значения амплитуд скорости указывают также на присутствие сильной «не-альвеновской» турбулентности. По ориентации осей симметрии зависимостей скорости от магнитного поля найдено, что альвеновские волны распространяются параллельно гелиоэкватору (по крайней мере, в среднем за большой интервал времени) во всем диапазоне радиальных скоростей V_R течения СВ. При V_R ≈300 км/с направление распространения волн почти радиально, но с ростом скорости оно быстро отклоняется от радиального направления в сторону направления регулярного магнитного поля (спирали Паркера). В высокоскоростных потоках СВ ориентация осей симметрии у зависмостей скорость-магнитное поле определяется не вполне однозначно, что, вероятно, указывает на значительный разброс направлений распространения альвеновских волн. Не исключено также, что это эффект присутствия анизотропной «не-альвеновской» турбулентности.

1. ВВЕДЕНИЕ

Экспериментальные данные указывают на существование потока альвеновских волн, распространяющихся в солнечном ветре